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1 INTRODUCTION 

Computational approaches are powerful tools for studying biological processes like bone 
remodeling, helping to inform clinical decisions, such as predicting the outcomes of interventions 
like fracture repair. However, traditional methods like the Finite Element Method (FEM), while 
reliable, can be computationally expensive, especially in iterative processes like those used in 
bone remodeling simulations. Recent advances have shown that data-driven approaches can 
provide accurate representations of trabecular bone structures in a fraction of the time required 
by conventional methods via surrogate models [1]. In this study, the effects of screw insertion in 
the healing of calcaneal fractures on bone density distribution are studied using neural networks 
to accelerate the prediction process. 

2 MATERIALS AND METHODS 
The finite element method was employed was as a solver for the bone remodelling process in the 
gathering of training data, 
The calcaneus was modelled as shown in Figure 1. The angles and magnitudes of each load were 
based on the literature [2] and kept constant and proportional. For simplicity the screw was 
considered to be solid, and the material was Ti-6Al-4V. The fractured was modelled with a very 
low modulus (1e-3 GPa). 

 
Figure 1 – Computational model of the calcaneus displaying the biomechanical loads, the screw and the fracture 

The neural network structure was a multi-layer perceptron (MLP) with several parameters being 
varied in order to obtain the best model, namely, the activation function of the hidden layers, the 
number of hidden layers and the size of the hidden layers.  
The network takes information regarding the most prevalent load case, the geometry of the bone 
and the screw and fracture. In total 16 parameters are used to quantify the model features: angle 
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αj of each of the 5 biomechanical loads in agreement with the model, horizontal stretch dx and 
vertical stretch dy which quantify the anatomical variations of the model; xj and yj coordinates of 
the insertion point of the screw, xk and yk coordinates of the end of the screw, screw diameter, xl 
and yl coordinates of the beginning of the fracture, xm and ym coordinates of the end of the 
fracture. A total of 18 inputs are necessary, which are the 16 inputs to label the model and the 
coordinates xi and yi of the point of interest being predicted. The output is the density ρi of the 
point of interest. 
The Adam optimizer was used to train the network. The batch size and learning rate were also 
tuned. 

3 RESULTS AND DISCUSSION 
Some neural predictions are shown in Figure 2 as well as the histogram for the histogram of the 
difference between targets and outputs. 

 
Figure 2 – Neural network predictions and error distribution histogram 

The neural network produces a smoother density field compared to the output from the FEM, 
functioning as an approximation of the bone density distribution. However, due to the high 
variability caused by fracture location and screw positioning, some load cases result in different 
density alterations depending on these factors. As a result, the predicted density field for such 
cases may be less precise or well-defined. When the trabecular distribution closely resembles that 
of the intact bone model, the quality of the predictions improves significantly. These observations 
align with previous findings by the authors, where neural networks were shown to effectively 
model the influence of geometries and load cases [1].  
According to the analysis, the median error in prediction is close to zero. Additionally, 39.96% 
of the points were predicted with an absolute error less than 0.2 g/cm³, and 66.77% with an error 
less than 0.5 g/cm³. This demonstrates that the neural networks are suitable surrogate models for 
FEM, as the variations in bone density within these error margins have minimal impact on the 
overall modulus of the bone. The discrepancies between the network's output and the target values 
are also partly due to the smoother density field generated by the neural network. 
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