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1 INTRODUCTION  
Minimizing stress shielding is a key challenge in implant design, as it often leads to aseptic 
loosening, a major cause of revision surgeries. Since bone regeneration relies on mechanical 
stress, poor load transfer can result in insufficient stimulus, causing bone deterioration. 
Advances in additive manufacturing have reduced implant stiffness by introducing porosity, 
allowing the creation of complex geometries. Porous designs are widely used in scaffolds to 
promote cell adhesion and fine-tune mechanical properties. 
Neural networks, with their non-linear mapping ability, can be used to design unit cell structures 
with specific mechanical properties [1], [2]. In this study, one network is trained to predict the 
elastic tensor from unit cell geometries, which is then integrated into an optimization algorithm. 
A second network is trained to generate unit cell geometries based on the target elastic properties. 

 
Figure 1 - Neural network scheme for reverse homogenization 

2 MATERIALS AND METHODS 
The surrogate model neural network has 400 input neurons, each representing an element of a 
uniform pixel grid, where 0 indicates a void and 1 indicates material. The output consists of four 
values, corresponding to the non-zero constants of the constitutive matrix. 
The reverse homogenization network has 7 input neurons: 4 for the constitutive matrix constants, 
1 for the volume fraction, and 2 for the pixel coordinates. It outputs the pixel density and must be 
run 400 times to generate a complete grid. 
Both networks are tuned for optimal hidden layer configurations, using hyperbolic tangent 
activation functions and a linear output layer. The second network’s continuous output is 
converted to binary (solid or void) using a 0.5 threshold. 

3 RESULTS AND DISCUSSION 
Regarding the surrogate homogenization network, the network with the lowest error had 4 hidden 
layers each with 40 neurons. The performance of the network for the direct task is shown in Figure 
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2, which shows the regression between the targets and the outputs of 50 separate instances in a 
test set. 

 
Figure 2 - Surrogate model for homogenization 

The surrogate model was integrated into a genetic algorithm to minimize the difference between 
the unit cell properties and the target properties. Figure 3 (a) shows a unit cell generated through 
genetic optimization, which resulted in a random structure with mechanical properties 
significantly different from the target. Additionally, discrepancies between the homogenized 
properties predicted by the network and those calculated by FEM reveal model inaccuracies for 
geometries outside the testing set. 
In contrast, the unit cell proposed by the reverse homogenization neural network, shown in Figure 
3 (b) has a geometry more similar to the training database. The homogenized properties exhibit 
an average relative error of 34% compared to the target properties. 

 
Figure 3 - Unit cell solutions using a surrogate model for homogenization and (a) a genetic algorithm (b) a neural 

network for unit cell design 
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